Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen–Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solutions is based on the convergence of Ginzburg–Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and then the Skorokhod compactness theorem, which is built upon uniform energy estimates.more » « less
-
In this paper, we consider weak solutions of the Euler–Lagrange equation to a variational energy functional modeling the geometrically nonlinear Cosserat micropolar elasticity of continua in dimension three, which is a system coupling between the Poisson equation and the equation of $$p$$-harmonic maps (#2\le p\le 3$$). We show that if a weak solution is stationary, then its singular set is discrete for $2<3$ and has zero one-dimensional Hausdorff measure for $p=2$. If, in addition, it is a stable-stationary weak solution, then it is regular everywhere when $$p\in [2, 32/15]$$.more » « less
-
We consider the initial boundary value problem of a simplified nematic liquid crystal flow in a bounded, smooth domain $$\Omega\subset\mathbb R^2$$. Given any k distinct points in the domain, we develop a new inner-outer gluing method to construct solutions that blow up exactly at those k points as t goes to a finite time T. Moreover, we obtain a precise description of the blowupmore » « less
An official website of the United States government

Full Text Available